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1. Abstract 

Finding patterns and using them to create and 

support conjectures, or theorems, is a key 

component of mathematics practice. Computers 

have been used by mathematicians to help with 

pattern recognition and conjecture generation. 

Here, we show how machine learning can help 

mathematicians come up with new conjectures 

and theorems by giving cases of new basic 

findings in pure mathematics found with its 

assistance. We recommend using attribution 

approaches to recognize probable patterns and 

connections among mathematical objects, after 

which you may use these discoveries to guide 

your intuition and offer presumptions in 

ChatGPT. We initiate this machine-learning-

guided structure and demonstrate how it can be 

successfully applied to recent research 

questions in several regions of pure 

mathematics errors and hallucinations in 

ChatGPT, in each case illustrating how it led to 

important mathematical advances on crucial 

key challenges: a new link between the 

algebraic and feature extraction techniques of 

knots, and a candidate algorithm anticipated by 

the perfect blend in-variance conjecture for 

symmetries. Our study might be used as an 

illustration of how mathematics, artificial 

intelligence (AI), and ChatGPT can cooperate 

to generate unexpected outcomes by exploiting 

each other's unique strengths. 

Pattern recognition and the formation of 

relevant hypotheses—statements that are 

presumed to be true but have not yet been 

shown to hold in every situation—are two of 

the main forces behind mathematical 

advancement. Two of the most important 

drivers of mathematical progress are the 

discovery of structures and the formulation of 

useful conjectures, which are hypotheses that 

are assumed to be true but have still not been 

demonstrated to apply in all circumstances. 

Mathematicians have always utilized data to aid 

in this procedure, whether it is the early hand-

calculated prime tables employed by Gauss and 

others that resulted in the ―prime number 

theorem‖ or more current computer-generated 

data in situations like Birch and Swinnerton-

Dyer conjecture. Thanks to the invention of 

computers to create data and test ideas, 

mathematicians today have a fresh 

understanding of earlier insoluble issues. Even 

while computational approaches have 

continually been effective in other elements of  

mathematical course, artificial intelligence (AI) 

systems have still not established a similar 

position. A variety of techniques for reliably 

finding patterns in data are provided by AI, 

particularly the study of ―machine learning‖, 

and its applicability in several scientific fields 

is expanding. AI has shown that it can be an 

effective instrument in mathematics by 

producing symbolic answers, speeding up 

computations, and spotting the existence of 

structure in mathematical objects. Here, we 

demonstrate how the AI model of ChatGPT 

may also be utilized to uncover cutting-edge 

theorems and hypotheses in mathematical 

research. This extends work utilizing 
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supervised learning to detect patterns by 

emphasizing making it feasible for 

mathematicians to interpret the learned 

functions and draw efficient mathematical ideas 

in ChatGPT. We introduce a methodology for 

extending the typical mathematician's toolset, 

which includes sophisticated pattern 

categorization and interpreting algorithms 

derived from "machine learning", and we show 

its value and generalization by showing how it 

assisted us in making two advancements, one in 

topology and another in representation theory. 

To create innovative findings in ChatGPT, our 

work exhibits the flexibility and fusion of well-

known mathematical operations with existing 

machine-learning approaches. 

2. Guiding mathematical intuition with AI 

 

A mathematician's intuition is vital to 

mathematical discovery because "complex 

mathematical problems can only be approached 

with a combination of both rigorous formalism 

and good intuition." The guideline that follows, 

illustrated in Fig. 1, provides an overview of a 

general strategy that mathematicians can 

practice ―machine learning‖ techniques to 

instruct their gut feelings regarding complicated 

mathematical artifacts, authenticating their 

hypotheses about the presence of relationships 

and assisting them in acknowledging those 

connections. 

 

 

 
―Flowchart of the framework, Fig. 1. By teaching a ―machine learning‖ model to estimate a hypothetical f(x over a certain data 

distribution PZ, the approach aids a mathematician's understanding. The comprehension of the issue and creation of a closed-form f′ can 

benefit from the revelations from the correctness of the learned function f and the attribution techniques used to it. Instead of being a 

linear process, iteration and interaction characterize the procedure.‖ 

 

 

We argue that this is a logical and 

experimentally successful approach for 

mathematicians to apply these well-known 

statistics and ―machine learning‖ techniques in 

their study. Mathematicians can strengthen their 

understanding regarding the connection 

between  two mathematical objects, X(z) and 

Y(z) associated with z, by locating a function f 

such that f (X(z)) Y(z) and examining it. We 

contend that using these well-known statistics 

and ―machine learning‖ approaches in 

mathematical research is a logical and 

experimentally winning approach. By 

discovering and analyzing a function f such that 
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f (X(z)) Y(z), mathematicians can better 

comprehend the affiliation between two 

mathematical objects X(z) and Y(z) related to z. 

The properties of the connection can then be 

understood by the mathematician. Assume that 

z is a convex polyhedron, with X(z) Z R 2 2 

representing its vertex, edge, volume, and 

surface, and Y(z) Z representing its face count. 

This offers an illustration. The connection 

between X(z) and Y(z) in this case is accurate 

according to Euler's formula: X(z) (1, 1, 0, 0) + 

2 = Y (z). Among several additional examples, 

the link might be recovered by employing the 

standard methods of data-driven speculation 

generation1. For X(z) and Y(z) in higher-

dimensional spaces, or of more complicated 

forms, such as graphs, and for more complex, 

nonlinear f, this strategy is either less successful 

or altogether unworkable. This process helped 

mathematicians identify patterns in 

mathematical objects by utilizing attribution 

methods and supervised ―machine learning‖ to 

corroborate the similarities that have been 

theorized to occur in mathematical objects. 

During the guided learning phase, the 

mathematician claims that X(z) and Y have a 

connection (z). By building a dataset containing 

X(z) and Y(z) pairings, We can deploy 

supervised learning. to develop a function f that 

predicts Y(z) using only X(z) as an output. The 

primary advantages of ―machine learning‖ in 

this cointegration procedure are numerous 

nonlinear functions that may be identified with 

sufficient data. If f is more precise than would 

be expected by chance, this raises the 

possibility of such a link and should be looked 

into. In this situation, attribution strategies can 

help the mathematician understand the learned 

function f so they can suggest a contender, f′. 

Employing attribution approaches, one may 

identify the features of f that are crucial for Y 

prediction (z). Many attribution strategies, for 

example, goal to compute the portion of X(z) 

that the function f is responsive to. Attribution 

technique we use in our work, gradient saliency, 

does this by calculating the derivative of the 

outcomes of f concerning the intakes. As a 

result, it is feasible for a mathematician to 

identify and tier the characteristics of the 

phenomenon that would be most significant to 

the connection. This iterative approach might 

have to be conducted numerous times before a 

viable hypothesis is selected. This procedure 

can be guided by the mathematician by 

choosing hypotheses that, despite fitting the 

facts, also strike them as fascinating, tenable, 

and, ideally, indicative of a proof method. From 

a conceptual perspective, this framework 

provides a "test bed for intuition" by 

immediately identifying if an intuition about the 

connection between two variables may be 

interesting to explore and, if so, providing 

direction on how they may be connected. It is 

possible that this iterative approach needs to be 

done numerous times before a viable hypothesis 

is selected. This procedure can be guided by the 

mathematician by choosing hypotheses that, in 

addition to fitting the facts, also strike them as 

fascinating, tenable, and, ideally, indicative of a 

proof method. From a conceptual perspective, 

this framework provides a "test bed for 

intuition" by immediately identifying if an 

intuition about the connection between two 

quantities may be interesting to explore and, if 

so, providing direction on how they may be 

connected. Using the abovementioned approach, 

we have developed one of the earliest linkages 

between algebraic and geometric invariants in 

knot theory and postulated solutions to the 

well-known combinatorial invariance 
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conjecture for symmetrical groups in 

representation theory. We demonstrate each 

instance when the paradigm effectively assisted 

the mathematician in arriving at the correct 

conclusion. The required models for each of 

these cases may be trained in a couple of hours 

on a computer with a single graphics processing 

unit. 

3. Topology using one graphics processing 

unit. 

 

Low-dimensional topology is a significant 

branch of mathematics. The knot, a 

straightforward closed loop in the third 

dimension, is one of the principal subjects 

investigated. One of the primary study 

objectives is to classify knots, learn about their 

features, and relate them to other subjects. One 

of the primary techniques for doing this is the 

use of invariants, which are algebraic, 

geometrical, or numerical properties that are 

same for any two equal knots. These invariants 

can be consequential in a variety of methods, 

but we focus on two of the most common: 

algebraic and hyperbolic invariants. Because 

these two categories of invariants originate 

from quite dissimilar areas of mathematics, it is 

important to build connections between them. A 

few examples of these invariants for tiny knots 

are shown in Figure 2. 

 

A famous case of a conjectured link is the 

volume conjecture, which states that hyperbolic 

volume of a knot (a geometric invariant) should 

be stored inside asymptotic behavior of its 

colored Jones polynomials (which are algebraic 

invariants). We assumed that there is an 

unrecognized link between a knot's algebraic 

and hyperbolic invariants. By using supervised 

learning, it was discovered that a huge number 

of geometric invariants and the signature (K), 

which is known to store crucial information 

about a knot K but had hitherto been unrelated 

to hyperbolic geometry reflect a trend. 

Three cusp geometry invariants were the most 

notable traits identified by the attribution 

approach; Fig. 3b partially shows their relation. 

Figure 3a depicts these characteristics. 

Research demonstrates that constructing a 

second model using X(z) including simply of 

these measurements leads to very comparable 

accuracy, indicating that these data are a 

sufficient set of characteristics to capture 

virtually all of the influence of geometry on the 

signature. The longitudinal translation and the 

real and fictitious parts of meridian translation 

consisted of these three invariants. The 

relationship between these factors and the 

signature is nonlinear and multivariate. After 

being asked to focus on these invariants, we 

found that the easiest way to understand this 

connection is to use a new number that is 

linearly connected to the signature. 
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Fig. 2 | ―Examples of invariants for three hyperbolic knots. We hypothesized that there was a previously undiscovered relationship 

between the geometric and algebraic invariants We introduce the concept of ―natural slope‖, which is defined as slope(K) = Re(/), where 

Re stands for the real part. It can be interpreted geometrically as follows. The meridian curve can be visualized as a geodesic on the 

Euclidean torus. From this orthogonally, if one fires a geodesic, it will eventually return and hit at some point. It will have done so by 

traveling along a longitude that is less than a certain multiple of the meridian.‖ 

 

We introduce the idea of "natural slope," which 

is described as slope(K) = Re(/), where Re 

stands for real component. It may be interpreted 

geometrically as follows. The meridian curve 

can be shown as a geodesic on Euclidean torus. 

From here orthogonally, if one launches a 

geodesic, it will ultimately return and hit at 

some location. It will have done so along a 

longitude that is less than a certain multiple of 

meridian. This number represents the natural 

slope. It may not have been an integer because 

the terminus and beginning point could not be 

the same. Our first theory on the natural slope 

and signature were as follows. 

Theorem: For each hyperbolic knot K, |2 K() 

slope() K c | vol(K c) + (1) 1 2 is a feasible 

value of the constants c1 and c2. 

Although this hypothesis was validated by an 

examination of multiple substantial datasets 

selected from different distributions, we were 

able to produce counterexamples by employing 

braids of a certain kind. This figure naturally 

represents the slope. It need not be an integer 

because the terminus could not be the same as 

the beginning point. The following were our 

first presumptions on the natural slope and 

signature. 

It is believed that constants c1 and c2 occur 

such that for any hyperbolic knot K, |2 K() 

slope() K c | vol(K c) + (1) 

Although this hypothesis was validated by an 

examination of numerous big datasets taken 

from diverse distributions, we were 

nevertheless able to produce counterarguments 

utilizing braids of a certain sort. Reference 27 

offers further details and a comprehensive 

demonstration of the abovementioned theorem. 

For the datasets we produced, we may establish 

a lower bound of c 0.23392, and it is reasonable 

to believe that c is at most 0.3, which leads to a 

close association in the locations where we 

have computed. 

 

Reference 27 provides further details and a 

thorough demonstration of the aforementioned 

theorem. For datasets we produced, we may 

establish a lower bound of c 0.23392, and it 

makes sense to suppose that c is at most 0.3, 

resulting in a close association in the areas 

where our computations have been performed. 
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4. Representation theory  

 

Representation theory is the name given to the 

theory of linear symmetry. Understanding the 

fundamental components, which form the basis 

of all representations, is one of the fundamental 

objectives of representation theory. By 

redundant representations28, basic frequencies 

of Fourier analysis are generalized. In 

numerous important circumstances, form of 

irreducible representations is governed by 

Kazhdan-Lusztig (KL) polynomials, which are 

strongly connected to combinatorics, algebraic 

geometry, and singularity theory. KL 

polynomials are connected to pairs of elements 

and are symmetric group polynomials (or more 

generally, pairs of elements in Coxeter groups). 

 

 

 

 
―Figure 4 shows two sample dataset elements from S5 and S6, respectively. The KL polynomial of a pair of permutations should be 

computed from their unlabeled Bruhat interval, according to the combinatorial invariance conjecture, but no such function was previously 

known.‖ 
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The combinatorial invariance conjecture 

regarding KL polynomials is a fascinating open 

conjecture that has only made some progress 

over the past 40 years. It asserts that KL 

polynomials of two components in a symmetric 

group SN may be determined using the 

unlabeled Bruhat interval30, a directed graph. 

One barricade to comprehending the link 

between these items is the size of the Bruhat 

intervals for non-trivial KL polynomials (those 

that are not equal to 1), which makes it difficult 

to acquire an understanding of them. The 

combinatorial invariance hypothesis, an 

intriguing unsolved conjecture involving KL 

polynomials, has been around for 40 years with 

only incomplete results29. It asserts that the KL 

polynomial of two elements in a symmetric 

group SN may be calculated from the directed 

graph of the unlabeled Bruhat interval30 of 

those two components. One of the obstacles to 

advancement in examining the relation between 

these items is the very large graphs of the 

Bruhat intervals for non-trivial KL polynomials 

(those that are not equal to 1Additional 

structural evidence has emerged by 

constructing salient subset that attribution 

techniques decided were most relevant and 

comparing The edge distribution within those 

graphs is identical to the earlier graphs. As per 

the reflection that each of those edges in Fig. 5a 

represents, we combine the relative frequency 

of the edges in salient subgraphs. Opposite to 

predictions, it indicates that extremal 

reflections—those for SN of the type (0, I, or I 

N 1)—appear more commonly in salient 

subgraphs than simple reflections—those for 

SN of the form I I + 1. This conclusion is 

confirmed by multiple model retraining in Fig. 

5b. This is important since it prevents recovery 

of the edge labels or the unlabeled Bruhat 

interval. Although it was first not evident why 

extremal reflections would be more common in 

salient subgraphs, the gap between simple and 

non-simple reflections is crucial for computing 

KL polynomials. We discovered that an interval 

can automatically split into two pieces by 

taking into consideration this observation: a 

hypercube formed by one group of extremal 

edges and a graph that is isomorphic to an 

interval in SN1. 
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―Fig. 5 | Attribution in the representation theory. An illustration of a heatmap showing how much more reflections is present in the salient 

subgraphs when compared to the dataset's average across intervals when predicting the fourth quarter. b, the proportion of edges of each 

type that were observed in the salient subgraph across 10 model retraining as compared to 10 bootstrapped samples of the same size from 

the dataset. A two-sided, two-sample t-test was used to calculate the significance level, and the error bars represent 95 percent confidence 

intervals. *p 0.05; ****p 0.0001. c, Illustration of the interesting substructures found through the iterative process of hypothesis, 

supervised learning, and attribution for the interval 021435-240513 S6. The hypercube is highlighted in green; the decomposition 

component is highlighted in red and the paragraph's inspiration from earlier work31‖ 

 

 

using representation theory to distribute. An 

example of a heatmap demonstrating the 

difference between average across intervals of 

dataset and the salient subgraphs when 

predicting q4. b, The measured edge % for each 

edge type in the salient subgraph for 10 models 

retraining are shown in contrast to 10 

bootstrapped samples of the same size from the 

dataset. A two-sided, two-sample t-test was 

used to determine the level of significance, and 

the error margins show 95 % confidence 

intervals. Demonstration for the fascinating 

substructures revealed through the iteratively of 

hypothesis, supervised learning, and attribution 

in range 021435-240513 S6. *p 0.05; ****p 

0.0001. The subgraph was influenced by prior 

work31, and the hypercube is indicated in green 

while the decomposition element is shown in 

red. This has been computationally proven for 

more than 1.3 105 non-isomorphic intervals 

taken from the symmetric groups S8 and S9 and 

for all 3 106 intervals in the symmetric groups 

up to S7.I assert that it is possible to determine 

KL polynomial of an unlabeled Bruhat interval 

using any hypercube decomposition. This 

suggested solution would refute the 

combinatorial invariance conjecture for 

symmetric groups if it were proven to be 

correct. This is an intriguing direction since the 

hypothesis has been experimentally proved up 

to pretty big cases, and it also has a particularly 

appealing shape that offers various ways of 

tackling the problem. This illustration 

demonstrates how trained models may provide 

non-trivial insights into the behavior of 

significant mathematical objects, resulting in 

the identification of novel structures. 

5. Conclusion 

 

These are some of the earliest linkages among 

knot algebraic and geometric structure and a 

suggested solution to a long-standing open 

problem in representation theory. are two 

examples of how this work illustrates a 

framework for mathematicians to practice 

―machine learning‖. Instead of using ―machine 

learning‖ to create conjectures directly, we 

concentrate on assisting the highly developed 

intuition of skilled mathematicians, producing 

both interesting and profound results. Using 

human intuition to guide AI in ChatGPT to 

solve mathematical issues, errors, and 

hallucinations. It is evident that elite 

performance in many areas of human endeavor 

greatly benefits from intuition. Similar to how it 

is regarded as essential for top mathematicians, 

Ramanujan—known as the Prince of 

Intuition—has prompted famous 

mathematicians to consider its role in their 

discipline. Since mathematics is a very different 

and more collaborative endeavor than Go, 

ChatGPT's use of AI to support intuition is 

much more logical. Here, we demonstrate that 

there is space that can help mathematicians in 

this area of their work. Our case studies show 
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how framework aids mathematicians in better 

understanding the behavior of objects too vast 

for them to perceive patterns in mathematical 

problems to solve. They also show how a 

foundational connection in a well-studied and 

mathematically interesting area can go 

unnoticed. The applicability of this framework 

is constrained because it necessitates the 

production of sizable datasets of object 

representations and the detection of patterns in 

calculable examples. Additionally, the functions 

of interest in some domains might be 

challenging to learn using this paradigm. 

However, we think our approach has 

applications in numerous fields. More generally, 

we hope that this framework will serve as a 

useful tool for introducing ―machine learning‖ 

into mathematicians' work by training AI to 

solve mathematical problems using human 

intuition, reducing errors and hallucinations in 

ChatGPT, and fostering future collaboration 

between the two disciplines. 
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